INTREXON®

Regulation of Insect Biotechnologies An Industry Perspective

Third International Workshop for Animal Biotechnology Regulation June 26, 2017

> Brad Shurdut, Vice President Regulatory and Government Affairs

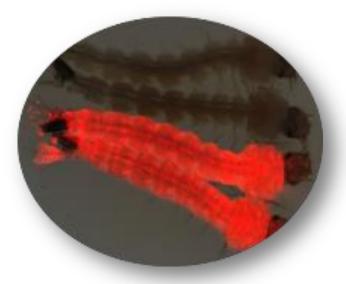
Forward-Looking Statements

Some of the statements made in this presentation are forward-looking statements. These forward-looking statements are based upon our current expectations and projections about future events and generally relate to our plans, objectives and expectations for the development of our business.

Although management believes that the plans and objectives reflected in or suggested by these forward-looking statements are reasonable, all forward-looking statements involve risks and uncertainties and actual future results may be materially different from the plans, objectives and expectations expressed in this presentation. All information in this presentation is as of the date marked on the cover page, and Intrexon undertakes no duty to update this information unless required by law.

^{© 2017} Intrexon Corp. All rights reserved. Intrexon Corporation is sharing the following materials for informational purposes only. Such materials do not constitute an offer to sell or the solicitation of an offer to buy any securities of Intrexon. Any offer and sale of Intrexon's securities will be made, if at all, only upon the registration and qualification of such securities under all applicable federal and state securities laws or pursuant to an exemption from such requirements. The attached information has been prepared in good faith by Intrexon. However, Intrexon makes no representations or warranties as to the completeness or accuracy of any such information. Any representations or warranties as to Intrexon shall be limited exclusively to any agreements that may be entered into by Intrexon and to such representations and warranties as may arise under law upon distribution of any prospectus or similar offering document by Intrexon.

Overview


- Intrexon Overview
- Regulation of Self Limiting Insects
- Learnings—Challenges and Opportunities

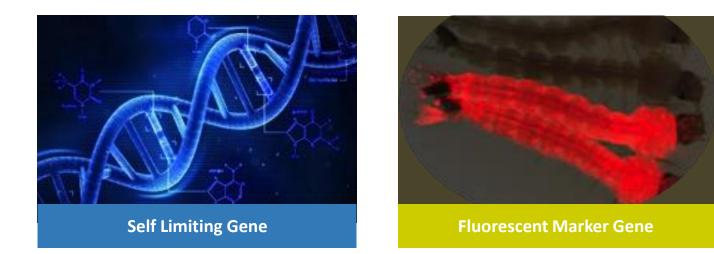
Who is Intrexon/ Oxitec? Our Self Limiting Insect Portfolio

We combat disease carrying insects and improve crop yields

through the reduction of the insect populations

with a genetic approach that is safe, sustainable, economic and applicable to many insect species worldwide

Oxitec's Portfolio

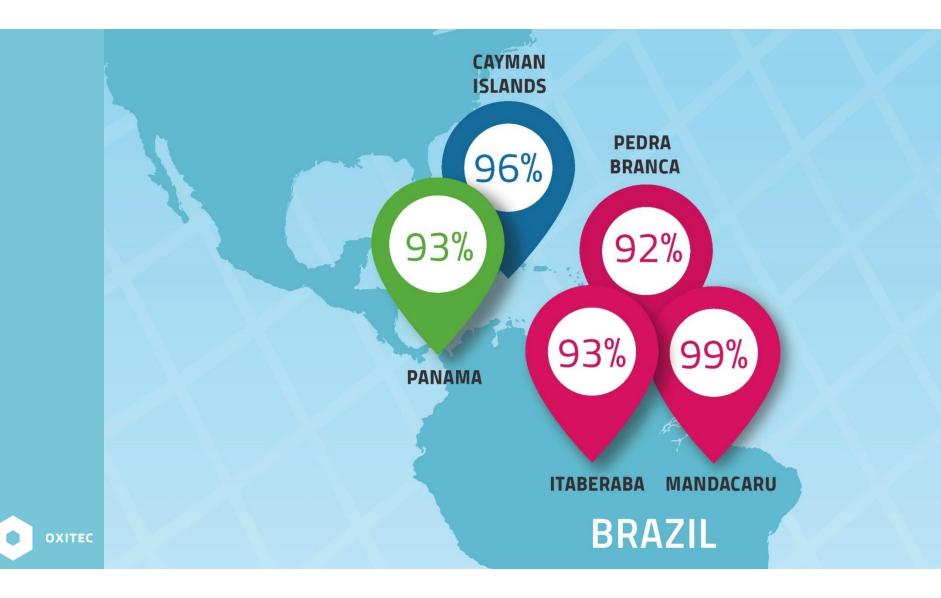

Agriculture

Target	Сгор
Medfly	Citrus/pome/ stone fruit
Olivefly	Olive
Diamond-back Moth	Brassica
Pink Bollworm	Cotton
Drosophila Suzukii	Soft Fruit

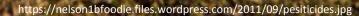
Public Health

Target	Vector of
Aedes aegypti	Dengue, Zika, Yellow Fever & Chikungunya
Aedes albopictus	Dengue, Zika, & Chikungunya

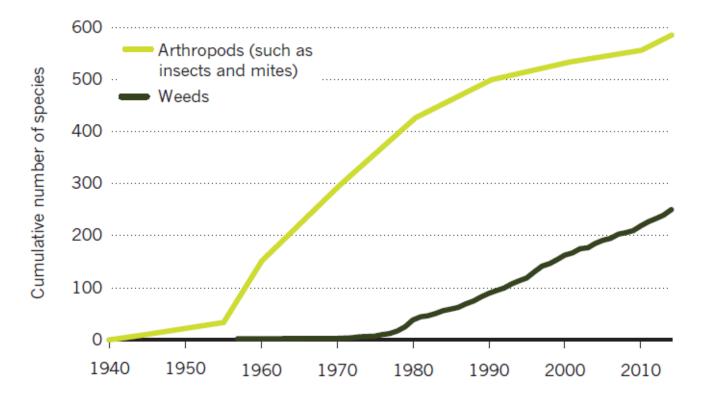
Self-Limiting Technology Overview


Oxitec male mosquitoes are produced for release and mate with pest females

Offspring die before they can reproduce and transmit disease



Global Suppression of Target Insect Populations


Agricultural Pest Insects

Managing Resistance

THE RISE OF RESISTANCE

The number of pests (including insect and plant species) resistant to at least one form of synthetic pesticide has been steadily on the rise for decades, as has the cost of developing such chemicals.

(When Pesticides Run Out, Borel, 2017)

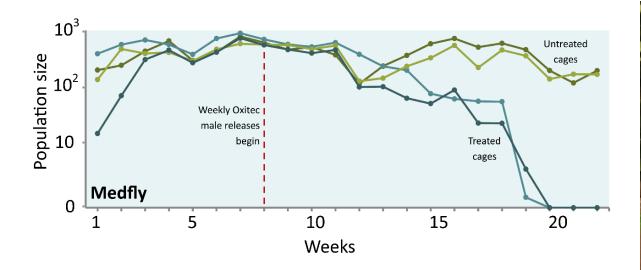
Current Self-Limiting Insect (SLI) Pipeline

Pipeline of self-limiting insects covers a multitude of end markets with multiple assets poised for continued development

Рі	oducts	Crop	Discovery Initial Screening	Phase 1 Proof of Concept	Phase 2 Early Development	Phase 3 Advanced Development	Phase 4 Pre-Launch
2P	Medfly	Hard Fruit					
	Diamondback Moth	Brassica					
	Spotted Wing Drosophila	Soft Fruit					
	Olive Fly	Olives					
	Pink Bollworm	Cotton					
C	onfidential Tar	get					

INTREXON[®]

Mediterranean Fruit Fly in Brazil


- Medfly, No. 1 Quarantine pest globally
- Affects exports to USA, Japan, China and Russia
- Large host range (>250 fruits and vegetables)
- Non-native to Brazil
- Most damaging fruit pest, affecting 4 million acres of fruit production

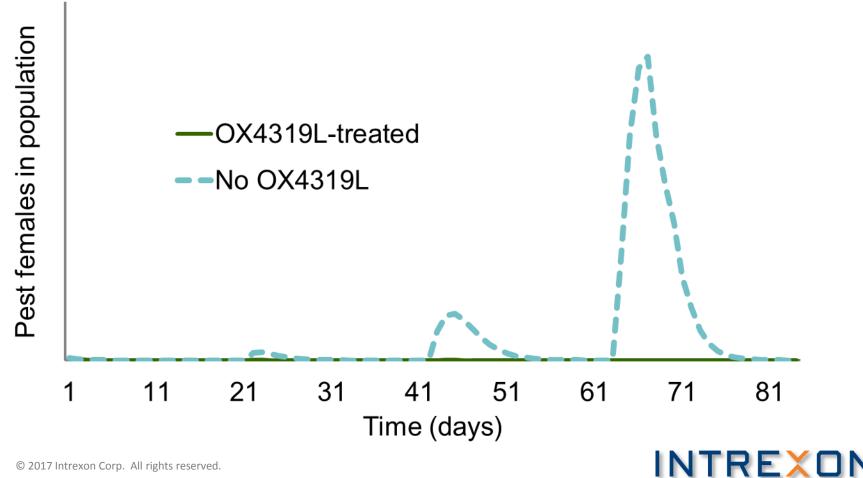
SLI Medfly Reduces Target Pest Population

Contained suppression trials in glasshouses and netted orchards have shown that releasing SLI male flies reduces the target population

Agadir, Morocco; with SAOAS

Crete, Greece; with University of Crete

The Diamondback Moth Problem



- Major pest of cruciferous vegetables
- Rapidly develops resistance to insecticides
- Costs farmers US\$4-5 billion every year

Oxitec OX4319L DBM Males Suppress DBM

Based on field cage results, population modelling indicates that Oxitec males prevent DBM population growth

How Should SLI Technologies Be Regulated? It Depends...

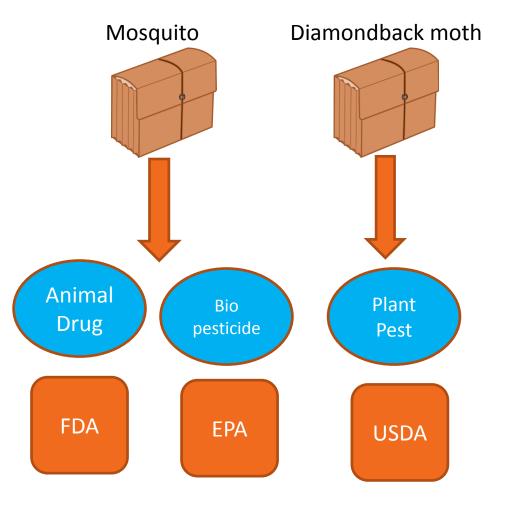
	Mosquito	Ag Pest	Plant Biotech
Technology			
GMO	*	*	*
Biopesticide	\star	*	*
Biocontrol Agent	*	*	
Disease Vector/ Human Health	*		
Plant Health		*	*
Animal Drug	\star		
Risk Assessment			
Human Risk	*	*	*
Environmental Risk	\star	*	*
NTO Risk	\star	*	*
Biosecurity/ Gene Flow	*	*	*
GMO Risk	\star	*	*

General Regulatory Approach

 Mixture of product and genetically modified/genetically engineered (GM/GE) legislation applicable, depending on country

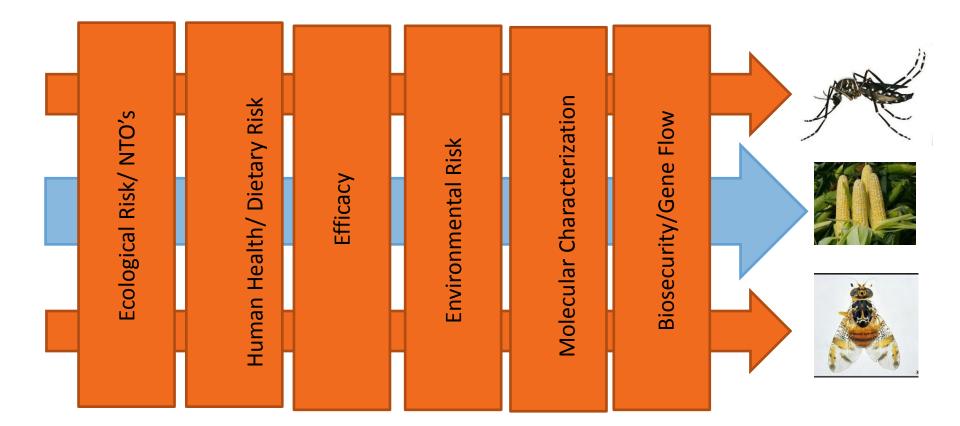
GM/GE *processbased* legislation

Process based


- Common requirements/ different interpretations
- •GM plant driven
- •Legislation available/ drafted
- Only risks considered
- •Expertise often aligned with agency implementation

Existing *product based* legislation

- Product based
- Legislation can be a poor fit
- Involvement of multiple agencies
- Capability, capacity and experience can be limited in agency with jurisdiction
- Some risk/benefit analysis


Defining Regulatory Oversight - USA

- Factors:
 - Legal framework
 - Technology/Process
 - Product claims
 - Vector control
 - Human Health
 - Pesticidal
 - Expertise and capablity
 - History
- What makes sense and is legally doable?

INTRE

Risk Assessment Paradigm Familiar but Different

Regulatory jurisdiction and oversight may differ, but problem formulation and core scientific risk assessments related to human health and environmental safety are very similar.

>14 Years of Studies-Biosafety Profile

- Genetically and phenotypically stable;
 >120 generations since 2002
- No toxic or allergenic components used - bioinformatics
- No harm to predators
 - Two oral exposure studies available
- Lifespan 2-4 days in environment
 - Males do not bite or transmit disease
 - No genetic components in saliva
- Fully susceptible to insecticides
- Species specific mating
- No environmental establishment
- Robust environmental monitoring methods
- Female vector competence not increased

 No unmanageable risks identified by regulators to date

Global Regulatory Progress

Import and contained trials approved

•	Austria	•	Singapore
•	France	•	Thailand
•	Greece	•	Vietnam
•	Guatemala	•	India
•	Israel	•	Australia

Current proposals for outdoor release

USDA

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Multiple ongoing

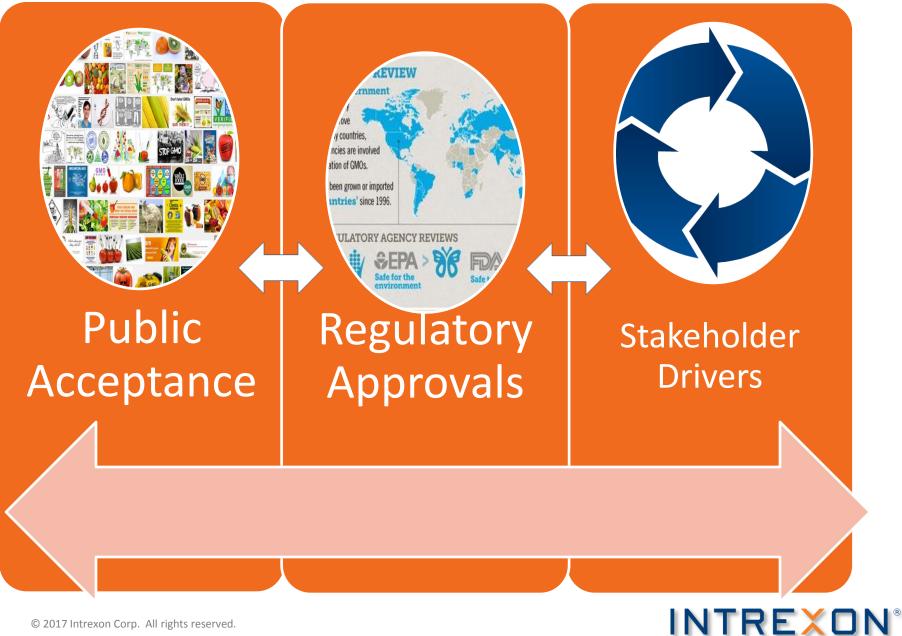
- USDA DBM
- Dutch EU standard

Environmental release approved

• Brazil

۰

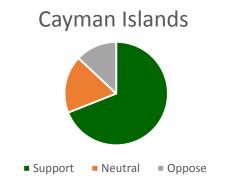
USA

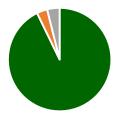

Panama

- Cayman
- Malaysia

INTREXON®

20 © 2017 Intrexon Corp. All rights reserved.


Regulatory Drivers


Public Engagement

Fundamental component of release program

- Robust public engagement plan
- Stakeholder mapping
- Adopt culturally appropriate methods
- Train staff
- Train partnering public heath/vector control agents
- 6-8 week intensive campaign before release
- Ongoing engagement throughout project
- Channels for 2 way communication listen and respond

Piracicaba, Brazil

Support Neutral Oppose

Florida, USA

Support Neutral Oppose

In Closing...Summary and Learnings

- Positively 'moving the needle' on novel animal GE product
- Most countries have shown a keen ability to adapt to a novel technology utilizing existing authorities and guidelines
- Global regulatory templates evolving for transgenic insects
- Common risk assessment principles apply across GM/GE organisms released into the environment, including insects
- Harmonization of regulatory requirements and transportability of data will be necessary to ensure timely regulatory approvals
- Proactive engagement and communication with regulators, the public and value chain stakeholders critical
- Risk-benefit aspects need to be consistently considered in regulatory decision-making and actions

